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Abstract 
  This paper presents the results of a comparative study of Pca and Ica in the field of data reduction.  In 

particular, we compare the two feature extraction techniques- independent component analysis (ICA) and Principal 

component analysis (PCA) to project microarray data into statistically independent components  and genes are 

clustered according to their mean distances from the calculated centroid. We test the statistical significance of 

enrichment of gene annotations within clusters. Result shows PCA outperforms ICA in constructing functionally 

coherent clusters on microarray Breast Cancer Wisconsin, Primary Tumours,, Parkinson’s tele monitoring  and ecoli  

data and hepatitis data set.   
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     Introduction
Microarray analysis techniques are used in 

interpreting the data generated from experiments on 

DNA, RNA, and protein microarrays, which allow 

researchers to investigate the expression state of a 

large number of genes - in many cases, an organism's 

entire genome - in a single experiment. Such 

experiments can generate very large volumes of data, 

allowing researchers to assess the overall state of a cell 

or organism. These large data amount can be difficult 

to analyze, especially in the absence of good gene 

annotation. Before any kind of microarray data can be 

analysed for differential expression several steps must 

be taken. Raw data must be quality assessed to ensure 

its integrity. Unprocessed raw data will always be 

subject to some form of technical variation and thus 

must be preprocessed to remove as many unwanted 

sources of variation as is possible, to ensure that results 

are of the highest attainable level of accuracy. Ideally, 

the data being assayed should be preprocessed using 

several different methods, the results of which should 

be compared to identify which method is of the highest 

level of suitability. The most appropriate method 

should then be used to preprocess the raw data before 

differential expression analysis.In an expression 

matrix, each gene corresponds to one row and each 

condition/sample to one column. Common tasks in 

clustering analysis of expression data include i) 

grouping genes by their expressions over 

conditions/samples, ii) grouping conditions/samples 

based on the expression of genes, and iii) finding 

subgroups of genes and conditions/samples such that 

the identified genes share similar expression patterns 

over a specified subset conditions/samples.  

Unsupervised (hypothesis-free) approaches 

are important for discovering novel biological 

mechanisms, for revealing genetic regulatory 

networks and for analyzing large datasets for which 

little prior knowledge is available. Here we apply ICA 

and PCA as a versatile unsupervised approach for 

feature extraction for microarray analysis, and 

evaluate its performance with different clustering 

techniques k means, Hierarchical and FCM. In 

clustering, the data consist only of the gene expression 

values. The analytical goal is to find clusters of 

samples or clusters of genes such that observations 

within a cluster are more similar to each other than 

they are to observations in different clusters. Cluster 

analysis can be viewed as a data reduction method in 

that the observations in a cluster can be represented by 

an ‘average’ of the observations in that cluster. 

  Unsupervised analysis methods for 

microarray data can be divided into three categories: 

clustering approaches, model based approaches and 

projection methods. Clustering approaches group 

genes and experiments with similar behavior [6-10], 

making the data simpler to analyze [11]. Clustering 
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methods group genes that behave similarly under 

similar experimental conditions, assuming that they 

are functionally related. Most clustering methods do 

not attempt to model the underlying biology. A 

disadvantage of such methods is that they partition 

genes and experiments into mutually exclusive 

clusters, whereas in reality a gene or an experiment 

may be part of several biological processes. Model-

based approaches first generate a model that explains 

the interactions among biological entities participating 

in genetic regulatory networks, and then train the 

parameters of the model on expression datasets [12-

16]. Depending on the complexity of the model, one 

challenge of model-based approaches is the lack of 

sufficient data to train the parameters, and another 

challenge is the prohibitive computational requirement 

of training algorithms. Projection methods linearly 

decompose the dataset into components that have a 

desired property. Both PCA and ICA are used to 

reduce measured data into a smaller set of 

components. PCA - utilizes the first and second 

moments of the measured data, hence relying heavily 

on Gaussian features .ICA - exploits inherently non-

Gaussian features of the data and employs higher 

moments. PCA is probably the optimal dimension-

reduction technique according to the sum of squared 

errors [17]. Applied to expression data, PCA finds 

principal components, the eigen arrays, which can be 

used to reduce the dimension of expression data for 

visualization, filtering of noise and for simplifying the 

subsequent computational analyses [18,19]. In 

contrast to PCA, ICA decomposes an input dataset into 

components so that each component is statistically as 

independent from the others as possible. A common 

application of ICA is in blind source separation (BSS) 

problems [20]: suppose that there are M independent 

acoustic sources - such as speech, music, and others - 

that generate signals simultaneously, and N 

microphones around the sources. Each microphone 

records a mixture of the M independent signals. Given 

N  mixed vectors as the signals received from the 

microphones, where N ≥ M, ICA retrieves M 

independent components that are close 

approximations of the original signals up to scaling. 

ICA has been used successfully in BSS of 

neurobiological signals such as 

electroencephalographic (EEG) and magneto 

encephalographic (MEG) signals [21-23], functional 

magnetic resonance imaging (fMRI) data [24] and for 

financial time series analysis [25,26].  ICA  can  also  

be  used  to reduce the effects of noise or artifacts of 

the signal [27] because usually noise is generated from 

independent sources. Most applications of ICA 

assume that the source signals are mixed linearly into 

the input signals, and algorithms for linear ICA have 

been developed extensively [28-32]. In several 

applications nonlinear mixtures may provide a more 

realistic model and several methods have been 

developed recently for performing nonlinear ICA [33-

35]. Liebermeister [36] first proposed using linear ICA 

for microarray analysis to extract expression modes, 

where each mode represents a linear influence of a 

hidden cellular variable. However, there has been no 

systematic analysis of the applicability of ICA as an 

analysis tool in diverse datasets, or comparison of its 

performance with other analysis methods.Here we 

apply PCA and ICA to microarray data analysis and 

project the genes into clusters. 

 

Multivariate Statistical Technique 
Multivariate Statistical Technique 

Multivariate data analyses can extract 

information from large data sets containing 

observations related to a wide range of variables. 

Principal component analysis (PCA) (Joliffe, 1986) 

and PLS are two multivariate projection methods that 

can handle problems associated with most microarray 

data such as missing values, the presence of more 

variables than observations, and noise. 

PCA is the oldest and best known of the 

multivariate projection techniques. The central idea of 

PCA is to reduce the dimensionality of a data set, X, 

while retaining as much as possible of the variation 

present in the data.The reduction is accomplished by 

introducing a new setof variables, the principal 

components, which are linear combinations of the 

original variables and uncorrelated to each other. The 

principal components can be determined using the 

NIPALS algorithm (Wold, 1966) or by singular value 

decomposition (SVD) .As in PCA, principal 

components are constructed to reduce the dimensions 

of X. . Consider a data matrix Xnxp with p component 

in each random vector X. A linear function βT have 

maximum variance. So that, 

 

𝛽1
𝑇𝑥 = 𝛽11𝑥1 + 𝛽12𝑥2 +⋯+ 𝛽1𝑝𝑥𝑝 

  

𝛽2
𝑇𝑥 , 𝛽2

𝑇𝑥 , 𝛽3
𝑇𝑥 …,𝛽𝑛

𝑇𝑥 are uncorrelated and 𝛽𝑘
𝑇𝑥 is 

the k th PC. We are interested to find variance and 

structure of correlation and covariance of p variables. 

Generally PCA concentrate on variance rather than 

correlation and covariance. We will assume that the 

mean vector is 0 and ∑ (singular and positive semi-

definite) is covariance matrix. Using this PCs we want 

to find out grouping or clusters in multivariate data set 

for subsequent procedure. 
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Independent Component Analysis (ICA) 

When data cannot be ensembled (hence, most 

likely non-Gaussian via Central Limit Theorem); 

when raw data appear to be very noisy; when a sensor 

records several source signals simultaneously 

.Mathematically, PCA is adequate if the data are 

Gaussian, linear, and stationary. If not, then higher 

order statistics begin to be essential.  Recently, ICA 

has been used by biomedical scientists as an 

unsupervised approach to explore gene expression 

features and discover novel underlying biological 

information from large microarray data sets. Gene 

expression data provided by microarray technology is 

considered a linear combination of independent 

components having specific biological interpretations. 

Let the n × k matrix X denote microarray gene 

expression data with k genes under n samples or 

conditions. xij in X is the expression level of the jth gene 

in the ith sample. Generally speaking, the number of 

genes k is much larger than that of the samples n, 

k> > n.   

                  Suppose that the data have been 

preprocessed and normalized (i.e., each sample has 

zero mean and standard deviation); then the ICA 

model for gene expression data is the same as  

                                                     X = AS  

The k × n matrix X is used to denote k genes 

under n samples. In this case, the transform, XT is used 

in the ICA model: XT = AST. So, XT here denotes the 

same n × k matrix as used in the ICA model.In ICA 

modeling of microarray data, the columns of A = 

[a1, a2, …, an] are the n×n latent vectors of the gene 

microarray data, S denotes the n × k gene signature 

matrix or expression mode, in which the rows of S are 

statistically independent to each other, and the gene 

profiles in X are considered to be a linear mixture of 

statistically independent components Scombined by 

an unknown mixing matrix A.  characteristically latent 

variables have been obtained, the corresponding 

elementary modes can be identified, which yields 

useful information for classification. Also, the 

distribution of gene expression levels generally 

features a small number of significantly overexpressed 

or under-expressed genes which form biologically 

coherent groups and may be interpreted in terms of 

regulatory pathways. 

K-means clustering 
K-means clustering partitions the input data set 

into K subsets. A description of K-means clustering is 

as follows: 

1. Initial K cluster centers (or average 

expression vectors) are located randomly or 

by using prior knowledge, and all the 

clustering objects are assigned to the closest 

center. 

2. The cluster center is then updated for each 

cluster and this is used to compute the 

distances between clusters. 

3. Cluster objects are moved iteratively between 

clusters and intra- and inter-cluster distances 

are measured with each move. Objects can 

remain in the new cluster only if they are 

closer to it than to their former cluster. 

4. The centers for each cluster are recalculated 

after each move. 

5. The iteration proceeds until moving any more 

objects would increase intra-cluster distances 

and decrease inter-cluster dissimilarity. 

Hierchical clustering 

Hierarchical Clustering is the most popular 

method for gene expression data analysis. In 

hierarchical clustering, genes with similar expression 

patterns are grouped together and are connected by a 

series of branches (clustering tree or dendrogram). 

Experiments with similar expression profiles can also 

be grouped together using the same method. 

Fuzzy C Means  

In fuzzy clustering data elements can belong 

to more than one cluster, and associated with each 

element is a set of membership levels. These indicate 

the strength of the association between that data 

element and a particular cluster. Fuzzy clustering is a 

process of assigning these membership levels, and 

then using them to assign data elements to one or more 

clusters. One of the most widely used fuzzy clustering 

algorithms is the Fuzzy C-Means (FCM) Algorithm 

(Bezdek 1981). The FCM algorithm attempts to 

partition a finite collection of n elements  into a 

collection of c fuzzy clusters with respect to some 

given criterion. Given a finite set of data, the algorithm 

returns a list of c cluster centres     partition matrix  , 

where each element wij tells the degree to which 

element xi belongs to cluster cj . Like the k-means 

algorithm, the FCM aims to minimize an objective 

function. The standard function is: 

 
  

which differs from the k-means objective function by 

the addition of the membership values uij and the 

fuzzifier m. The fuzzifier m determines the level of 

cluster fuzziness. A large m results in smaller 

memberships wij and hence, fuzzier clusters. In the 

limit m = 1, the memberships wij converge to 0 or 1, 

which implies a crisp partitioning. In the absence of 

experimentation or domain knowledge, m is 

commonly set to 2. The basic FCM Algorithm, given 
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n data points (x1, . . ., xn) to be clustered, a number of 

c clusters with (c1, . . ., cc) the center of the clusters, 

and m the level of cluster fuzziness with, The basic 

process of Fuzzy c means clustering’s are 

 

1 Choose a number of clusters. 

2 Assign randomly to each point coefficients for being 

in the clusters. 

3 Repeat until the algorithm has converged (that is, the 

coefficients' change between two iterations is no more 

than  , the given sensitivity threshold) :  

4 Compute the centroid for each cluster, using the 

formula above. 

5 For each point, compute its coefficients of being 

in the clusters, using the formula above 

  

 
Figure 1: Proposed Modal 

 

Proposed Model 
Gene expression microarrays provide a 

snapshot of all the transcriptional activity in a 

biological sample. Unlike most traditional molecular 

biology tools, which generally allow the study of a 

single gene or a small set of genes, microarrays 

facilitate the discovery of totally novel and unexpected 

functional roles of genes. The power of these tools has 

been applied to a range of applications, including 

discovering novel disease subtypes, developing new 

diagnostic tools, and identifying underlying 

mechanisms of disease or drug response. However, 

this technology necessarily produces a large amount of 

data, challenging us to interpret it by exploiting 

modern computational and statistical tools . We have 

downloaded benchmark dataset from UCI repository 

shown in table 1.  In our proposed model we are 

subjecting the data to undergo normalization that is 

done using various techniques like Min-max 

normalization, Z-score normalization and 

normalization by decimal scaling. Min-max 

normalization performs a linear transformation on the 

original data. Suppose that mina and maxa are the 

minimum and the maximum values for attribute A. 

Min-max normalization maps a value v of A-v in the 

range (0, 1) by computing: 

 

Once data is normalized its feature is extracted using 

PCA and ICA using algorithm 1 and 2 respectively. 

This data set having reduced dimension is passed 

through different clustering technique such as K 

Means, Hierarchical and Fuzzy c means technique. 

Their output is validated using b index using algorithm 

3.  Result shows PCA is better than ICA. 

Algorithm 1: PCA 

Step 1.Get some data. 

Step 2.Substract the mean 

Step 3. Calculate the covariance  matrix. 

Step 4. Calculate the eigenvectors and eigenvalues of 

the covariance Matrix. 

Step 5. Choosing components and forming a feature 

vector 

Algorithm 2: ICA 

Step 1. Centering 

The most basic and necessary preprocessing is to 

center x, i.e. subtract the mean vector m = E{x} so as 

to make x a zero-mean variable 

Step 2. . After estimating the mixing matrix A with 

centered data, we can complete the estimation by 

adding the mean vector of s back to the centered 

estimates of s. The mean vector of s is given by A-1m, 

where m is the mean that was subtracted in the 

preprocessing. 

 Step 3: for i=1:n 

 W=random vector; 

Orthogonalize initial vector w in terms of the 

previous components; 

 Normalize w; 

While w(not converged) 

 Approximation of negonntrophy of wTx 

Orthogonalize w in terms of the previous components; 

 Normalize; 

End while; 

W(:,i)=w 

End for 

S=W*X, return s; 

Algorith 3: Davies-Bouldin Index 

The Davies-Bouldin criterion is based on a ratio of 

within-cluster and between-cluster distances. The 

Davies-Bouldin index is defined as 

 
where Di,j is the within-to-between cluster distance 

ratio for the ith and jth clusters. In mathematical terms, 

 

 is the average distance between each point in 

the ith cluster and the centroid of the ith cluster.  is 
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the average distance between each point in the ith 

cluster and the centroid of the jth cluster.  is the 

Euclidean distance between the centroids of the ith 

and jth clusters. 

The maximum value of Di,j represents the worst-case 

within-to-between cluster ratio for cluster i. The 

optimal clustering solution has the smallest Davies-

Bouldin index value. 

 

Experimental Evaluation 
Proposed model is tested using different data 

set Breast cancer Wisconsin, Primary Tumours,,, 

Parkinson’s tele monitoring   ecoli  data and hepatitis 

data set.   High dimension data is at as a curse to the 

computation. These high dimension can be reduced 

using PCA and ICA. 
Table 1: Data Set description 

Data Set Number 

of 

Instances 

Number 

of 

Attribute 

Number 

of class 

Breast cancer 1484 8 10 

Ecoli data 72 7129 2 

Parkinson’s 

telemonitoring 

60 7129 2 

Primary 

tumours 

197 581 4 

hepatitis 45 4026 2 

 

After normalization and feature extraction dimension 

of data is reduced is shown in Table 2. 
Table 2: Feature Extracted using PCA and ICA 

Data Set PCA ICA 

Breast cancer 1484X5 1484X4 

Ecoli data 72X 72X 

Parkinson’s 

telemonitoring 

60 7129 

Primary 

tumours 

197 581 

hepatitis 45 4026 

Feature extracted data is use to find cluster 

using different clustering techniques whose output are 

shown in figure 2-6. Validation of clustering is done 

using b index shown in table 3. Table 3 clearly depicts 

that PCA is better then ICA for gene expression data 

set. 
 

 

 

 

 

 

 

 

Table 3: B Index : of different clustering technique 

using PCA and ICA 

Data Set 
CLUSTERING 

HIERACH

ICAL  

K 

MEANS  

FUZZY C 

MEANS 

PC

A ICA 

PC

A 

IC

A PCA ICA 

Breast 

cancer 

1.1

34 

4.02

0 

229

.8 

8.4

42 

6906

2.7 1.0977 

Ecoli 

data 

2.7

55 

8.10

6 

9.4

12 

27.

01 

142.

1 

26364

39.9 

Parkinso

n’s 

telemonit

oring 

0.9

54 

2.00

9 

187

53 

7.2

71 

1.14

9 

12827.

4 

       

Primary 

tumours 

1.7

59 

8.08

0 

249

78 

15.

48 

0.23

8 

38319

1.4 

hepatitis 6.8

87 

5.85

6 

7.0

63 

8.0

83 6.63 19.114 

 

 
Figure 2: Breast cancer Clustering a) PCA Hierarchical 

b) ICA Hierarchical c) PCA KMeans d) ICA K Means 

e) PCA FCM f)ICAM 
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Figure 3: ecoli Clustering a) PCA Hierarchical b) ICA 

Hierarchical c) PCA KMeans d) ICA K Means e) PCA 

FCM f)ICA FCM 

 
Figure 4:Parkinson’s Tele monitoring Clustering a) 

PCA Hierarchical b) ICA Hierarchical c) PCA KMeans 

d) ICA K Means e) PCA FCM f)ICA FCM 

 
Figure 5: Primary Tumour data Clustering a) PCA 

Hierarchical b) ICA Hierarchical c) PCA KMeans d) 

ICA K Means e) PCA FCM f)ICA FCM 

 

 
Figure 6: Hepatitis data set Clustering a) PCA 

Hierarchical b) ICA Hierarchical c) PCA K Means d) 

ICA K Means e) PCA FCM f)ICA FCM 
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Conclusion 
If we compare all the data sets we observe 

that PCA outperforms ICA in all the above data 

sets.ICA is unable to find clear clusters using the raw 

data . A careful look on scatter plot of ICA is very 

important to find out how PCA outperforms ICA. PCA 

minimizes the covariance of the data; on the other 

hand ICA minimizes higher-order statistics such as 

fourth-order cummulant (or kurtosis), thus minimizing 

the mutual information of the output. Specifically, 

PCA yields orthogonal vectors of high energy contents 

in terms of the variance of the signals, whereas ICA 

identifies independent components for non-Gaussian 

signals.ICA thus possesses two ambiguities :First, the 

ICA model equation is underdetermined system ;one 

cannot determine the variances of the independent 

Components .Second, one cannot rank the order of 

dominant components.   
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